Adjusting to Trade Liberalization: Reallocation and Labor Market Policies

A. Kerem Cosar

Department of Economics
The Pennsylvania State University

New Faces in International Economics
The Pennsylvania State University

May 10, 2010
Industry Level Tariff Rates Before and After Trade Reforms

Tariff Level in 1986

Tariff Level in 1994
Brazilian Trade Liberalization

Manufacturing Workforce Composition across 3-digit Industries

![Graphs showing employment share trends from 1990 to 1995.](image-url)
Motivation

Evidence:

1. *Labor market effect of trade liberalization in the short-run:* little inter-sectoral labor reallocation,

2. Sectoral switches are associated with longer than average unemployment spells and earning losses,

3. Higher adjustment burden for older workers.

Policy relevance: long-run gains vs. short-run costs

Need for dynamic structural models to analyze the transition
This paper

- Model
 - Two-sector small open economy
 - Random search and matching
 - Sector-specific learning-by-doing
 - Overlapping generations

- Calibration
This paper

- Transition
 - Determinants of sluggish adjustment: search frictions and sector-specificity of human capital
 - Policy experiments: unemployment insurance and employment subsidies
Related Literature

- **Sector-specificity of physical capital**

- **Adjustment costs for labor reallocation**

- **Worker displacements and policies**

- **Sector-specificity of human capital**

- **Search models**
THE MODEL
A measure one of workers and firms

Linear momentary utility in consumption with discount factor

\[\beta \in (0, 1) \]

Workers own a balanced portfolio of firms
Demographics

Life-cycle Shocks
Production

- Two intermediate goods with world prices \((p_1, p_2) = (1, 1)\)
- Sector 2 is protected with ad-valorem import tariff \(\tau\),
 \[p_{2d} = (1 + \tau), \quad p_{1d} = 1\]
- Final good production
 \[Y = \sqrt{Q_1} \sqrt{Q_2}\]
- Price of the final good
 \[p_Y = 2\sqrt{p_{1d}} \sqrt{p_{2d}}\]
- Intermediate goods produced by worker-firm pairs (jobs)
Timing of Matching and Production
Newborn workers start with $h = (1, 1)$

The law of motion for h (learning-by-doing):

$$h_{it+1} = \begin{cases}
 h_{it} H^{1-\alpha} & \text{if employed in sector } i, \\
 \max\{1, (1 - \delta_h) h_{it}\} & \text{otherwise,}
\end{cases}$$

where $\alpha \in [0, 1]$ and $\delta_h \in [0, 1)$.
Human Capital Formation

Diagram showing the relationship between Human Capital, h_i, and the number of periods employed in Sector i. The graph indicates an increasing trend with h_i as the number of periods increases.
Newborn workers start with $h = (1, 1)$

The law of motion for h (learning-by-doing):

$$h_{it+1} = \begin{cases} h_{it}^\alpha H^{1-\alpha} & \text{if employed in sector } i, \\ \max\{1, (1 - \delta_h)h_{it}\} & \text{otherwise}, \end{cases}$$

where $\alpha \in [0, 1]$ and $\delta_h \in [0, 1)$.

State space for h_t:

$$h_t \in \mathcal{H} = [1, H] \times [1, H]$$
Firms

Timing of Events for Idle Firms
Labor Markets

• Undirected search with aggregate matching function

\[m(U, V) = \frac{UV}{(U^\lambda + V^\lambda)^{1/\lambda}} \]

• Composition of vacancies

\[\mu_i = \frac{V_i}{V} \]

such that

\[V = V_1 + V_2 \]
• matching probability for an unemployed worker:

\[\phi_{w_i} = \mu_i \frac{m(U, V)}{U} \]

• matching probability for an idle firm:

\[\phi_f = \frac{m(U, V)}{V} \]

• Period-by-period Nash bargaining over rents with worker’s share

\[\sigma \in (0, 1) \]
Workers’ state:
- generation: young or old, \{y, o\}
- human capital: \((h_{1t}, h_{2t})\)
- labor market status: \([\ell_1(z), \ell_2(z), \ell_u]\)
Value of a Job

Sector-\(i\) job

- with an old worker:
 \[
 \Pi_{it}(z, h_t, o) = p_{id} q_{i}(z, h_t) + \beta (1 - \delta^o_{JD}) (1 - \delta_{m}) \Pi_{it+1}(z, h_{t+1}, o)
 \]

- with a young worker:
 \[
 \Pi_{it}(z, h_t, y) = p_{id} q_{i}(z, h_t) + \beta (1 - \delta^y_{JD}) \left[\delta_{a} \Pi_{it+1}(z, h_{t+1}, o)
 + (1 - \delta_{a}) \Pi_{it+1}(z, h_{t+1}, y) \right]
 \]
Job Acceptance Policy

- Outside options: \(W_{ut}(h, y) \) for a young worker and \(J_t \) for the firm

- Surplus of a sector-\(i \) job of productivity \(z \)

\[
\Delta_{it}(z, h_t, y) = \Pi_{it}(z, h_t, y) - [W_{ut}(h_t, y) + J_t]
\]

- Worker’s problem

\[
W_{it}[z, h_t, y] = \max_{\text{accept, reject}} \left\{ \sigma \Delta_{it}(z, h_t, y) + W_{ut}(h_t, y), W_{ut}(h_t, y) \right\}.
\]

- Jointly accept the job if \(z \geq \tilde{z}_{it}(h_t, y) \)
Firms: Vacancy Posting Policy

- Non-specialization through heterogeneous vacancy posting cost draws
- Taking the expected value conditional on matching as given, enter sector 1 if

\[\phi_{ft}\beta[EJ_{1t+1} - J_{t+1}] \geq p_{yt}c_1, \]

\[\phi_{ft}\beta EJ_{1t+1} - p_{yt}c_1 \geq \phi_f\beta EJ_{2t+1} - p_{yt}c_2. \]

- which defines a cutoff cost level

\[\tilde{c}_{1t} = \frac{\phi_{ft}\beta(EJ_{1t+1} - J_{t+1})}{p_{yt}} \]
Firms: Vacancy Posting Policy

Figure: Sectoral Entry Decision

- The cutoff rules define \((\mu_1, \mu_2)\), the fraction of vacancies in each sector.
Given world prices and trade policy τ, an \textit{equilibrium} is a collection of paths such that

- agents optimize,
- aggregates are consistent with individual behavior,
- markets clear,
- trade balance holds,
- the distribution of workers evolves consistently with the decision rules and idiosyncratic shocks.
Excess job turnover with simultaneous job creation and destruction
 - Davis, Haltiwanger and Schuh (1998)

Wages are increasing in job tenure and labor market experience
 - Murphy and Welch (1990), Topel (1991)

Inter-sectoral mobility declines over the life-cycle
 - Kambourov and Manovskii (2008)
CALIBRATION
Calibration Strategy

- Model period: quarter
- Calibrate the steady state to Brazilian pre-liberalization data
- Parameters Set Without Solving the Model
- Parameters Obtained by Solving the Model
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Value</th>
<th>Source/Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_m</td>
<td>death probability</td>
<td>$1/80$</td>
<td>20 years of youth</td>
</tr>
<tr>
<td>δ_a</td>
<td>aging probability</td>
<td>$1/80$</td>
<td>20 years of old-age</td>
</tr>
<tr>
<td>$F_z(z)$</td>
<td>productivity</td>
<td>uniform $[0, 1]$</td>
<td>-</td>
</tr>
<tr>
<td>σ</td>
<td>worker’s bargaining share</td>
<td>0.50</td>
<td>-</td>
</tr>
<tr>
<td>A_2</td>
<td>sector 2 productivity</td>
<td>1</td>
<td>normalization</td>
</tr>
<tr>
<td>τ</td>
<td>import tariff</td>
<td>0.63</td>
<td>Pavcnik et al.(2004)</td>
</tr>
<tr>
<td>β</td>
<td>discounting rate</td>
<td>0.97</td>
<td>real interest rate, IPEA</td>
</tr>
<tr>
<td>δ_{JD}^y</td>
<td>job destruction for young</td>
<td>0.018</td>
<td>Bosch and Maloney(2007)</td>
</tr>
<tr>
<td>δ_{JD}^o</td>
<td>job destruction for old</td>
<td>0.012</td>
<td>Bosch and Maloney(2007)</td>
</tr>
<tr>
<td>δ_h</td>
<td>depreciation of HC</td>
<td>0</td>
<td>Browning et al.(1999)</td>
</tr>
</tbody>
</table>
Parameters Obtained by Solving the Model

- vacancy cost function $F_c(c)$: assume log-c is normally distributed with mean 0, and standard deviation C_{sd}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Target</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.974</td>
<td>ave. earnings at 5 years of experience / ave. beginning of the career earnings = 1.41</td>
<td>Menezes Filho et al. (2008)</td>
</tr>
<tr>
<td>H</td>
<td>2.6</td>
<td>ave. earnings at 40 years of experience / ave. beginning of the career earnings = 2.43</td>
<td>Menezes Filho et al. (2008)</td>
</tr>
<tr>
<td>A_1</td>
<td>1.71</td>
<td>Export / (Value Added) = 0.263</td>
<td>Pavcnik et al. (2004), OECD</td>
</tr>
<tr>
<td>λ</td>
<td>2.16</td>
<td>elasticity of hiring to unemployment = 0.25</td>
<td>Hoek (2007)</td>
</tr>
<tr>
<td>C_{sd}</td>
<td>1.49</td>
<td>transition probability from U to E = 0.37</td>
<td>Domeland et al. (2006)</td>
</tr>
</tbody>
</table>
THE TRANSITION
The Transition

- Trade Liberalization:
 - Unexpected, permanent decrease in τ.

- Transitional dynamics
 - Quantitative exploration of sluggish adjustment
 -> Search frictions vs. sector-specificity of human capital

- Labor Market Policies:
 -> Actual policy: unemployment insurance
 -> Counter-factual policy: targeted employment subsidy
Sources of Sluggish Adjustment

Figure: Employment Share Reallocation During the Transition
Brazilian Labor Market Policies

- 1988 Labor Market Reform in Brazil.

- Public expenditure on labor market policies ≈ 1% of GDP,
 - 70% on unemployment insurance,
 - 15% on wage supplement program,
 - remaining on active labor market policies.

→ Actual policy experiment: introduce unemployment insurance jointly with trade liberalization, financed by a 1% tax on all match revenues
Actual Policy: Short Run

Figure: Unemployment During the Transition
Actual Policy: Long Run

Figure: Net Output under Actual Policy
Actual Policy: Long Run

Figure: Comparison of Net Output Paths
Counter-factual Policy: Employment Subsidy

- 2002 Alternative Trade Adjustment Assistance, and 2009 Reemployment Trade Adjustment Assistance in the US

- Insure 50% of earnings losses for trade-displaced workers older than 50 up to $10,000 over 2 years

→ Counter-factual policy experiment: a targeted limited-duration employment subsidy paid to old workers initially employed in sector 2 upon employment in sector 1.

→ Revenue neutral policy.
Counter-factual Policy: Employment Subsidy

Figure: Net Output under Labor Market Policies
Role for Policy: Externalities

- Search externality between firms
- Human capital externality between workers and firms: sub-optimally low investment in skill acquisition in frictional labor markets

Conclusion

- Policy implications for the design of trade adjustment programs: 2002 US Alternative TAA

- Future work:
 - Analysis of welfare effects on different groups of workers
 - General versus sector-specific human capital
THE END
Fact 1: Inter-sectoral Reallocation

 “...tariff cuts and additional imports trigger worker displacements, but neither comparative-advantage sectors nor exporters absorb trade-displaced workers for years.”

- What happens to workers displaced from import-competing industries at a four-year horizon?

 → 30% rehired into the same sectors,

 → 30% employed at formal non-traded sectors,

 → 26% not employed at any formal job,

 → only 14% is hired into export-oriented industries.
Fact 1: Inter-sectoral Reallocation

- Rayner and Lattimore (1990) for New Zealand
- Ros (1994) for Mexico
- Currie and Harrison (1997) for Morocco
- Levinsohn (1999) for Chile
- IDB (2009) for a group of Latin American countries
- Wacziarg and Wallack (2004) for a panel of liberalizers
FACT 2: COSTLY MOBILITY FOR DISPLACED WORKERS

- Menezes-Filho (2004), Hoek (2007) for Brazil
- Krebs, Krishna and Maloney (2008) for Mexico
- US data
 - Murphy and Topel (1987)
 - Kletzer (2001)
 - Artuc, Chaudhuri and McLaren (2008)
 - Krishna and Senses (2009)
Fact 3: Life-cycle Effects of Adjustment Burden

- Older workers face a higher risk of not finding reemployment after being displaced from import competing industries.
- Evidence from Brazil by Menezes-Filho and Muendler (2008):

![Failed Reallocation Within a Year of Displacement in Brazil](chart.png)

- Failed Reallocation Within a Year of Displacement in Brazil
- **Average**
- **Young Workers (≤ 10 years of experience)**
More Evidence

- Little inter-sectoral reallocation of labor:
 - Levinsohn (1999) for Chile
 - Currie and Harrison (1997) for Morocco
 - Menezes-Filho and Muendler (2007) for Brazil
 - Wacziarg and Wallack (2004) for a panel of liberalizers

- Effect on displaced workers:
 - Krishna and Senses (2009) for Mexico

- Effect on old workers:
 - Boeri and Terrell (2002) for Eastern Block countries
 - Maloney (2003) and IDB (2009) for Brazil
For $\ell_w = \ell_{w_i}$, the value of a job to a worker of state (z, h, g) equals the sum of her share of the surplus $\Sigma_{it}(z, h, g)$, and the value of her outside option of unemployment:

$$W_t(\ell_{w_i}, z, h_t, g) = \sigma \Sigma_{it}(z, h_t, g) + W_t(\ell_{w_u}, z, h_t, g)$$

The value of unemployment ($\ell_w = \ell_{w_u}$) for an old worker is:

$$W_t(\ell_{w_u}, h_t, o) = p_{ft} \cdot b$$

$$+ \beta(1 - \delta_m) \left[\sum_{i=1}^{2} \phi_{wi}f_{\ell_{w_i}} \int_{0}^{\bar{z}} W_{t+1}(\ell_{w_i}, z, h_{t+1}, o)I_{z_i}(z, h_{t+1}, o)f_z(z)dz
+ (1 - \phi_{w_1t} - \phi_{w_2t})W_{t+1}(\ell_{w_u}, h_{t+1}, o) \right]$$
For a young worker:

\[W_t(\ell_{w_t}, h_t, y) = p_{ft} \cdot b \]

\[+ \beta (1 - \delta_a) \left[\sum_{i=1}^{2} \phi_{w_i t} \int_{0}^{\bar{z}} W_{t+1}(\ell_{w_i}, z, h_{t+1}, y) I_{\bar{z}_i}(z, h_{t+1}, y) f_z(z) dz \right. \]

\[+ (1 - \phi_{w_{1t}} - \phi_{w_{2t}}) W_{t+1}(\ell_{w_u}, h_{t+1}, y) \]

\[+ \beta \delta_a \left[\sum_{i=1}^{2} \phi_{w_i t} \int_{0}^{\bar{z}} W_{t+1}(\ell_{w_i}, z, h_{t+1}, o) I_{\bar{z}_i}(z, h_{t+1}, o) f_z(z) dz \right. \]

\[+ (1 - \phi_{w_{1t}} - \phi_{w_{2t}}) W_{t+1}(\ell_{w_u}, h_{t+1}, o) \]
Entrepreneur's Value Function

\[J_t = \beta \left[\sum_{i=1}^{2} \bar{\mu}_{it} [\phi_{ft} E J_{it+1} - p_{ft} \hat{c}_{it}] + (\bar{\mu}_{1t} + \bar{\mu}_{2t})(1 - \phi_{ft}) J_{t+1} + (1 - \bar{\mu}_{1t} - \bar{\mu}_{2t}) J_{t+1} \right] \]

The surplus is:

\[\Sigma_{it}(z, h_t, g_t) = \Pi_{it}(z, h_t, g_t) - [W_t(\ell_{wu}, h_t, g_t) + J_t]. \]
Sector 1 Job Acceptance Rule, $\tilde{z}_{1t}(h_t, o)$

Figure: Cutoff Productivity in Sector 1
Computation of Steady State Equilibrium

Step 1. Start iteration \(j \) with a pair of values for entrants’ expected values of matching \((EJ^{j}_1, EJ^{j}_2) \) in the two sectors.

Step 2. Calculate \((J(m_u), \phi_f, \phi_w, \tilde{\mu}_1, \tilde{\mu}_2) \) by simulating a large number of cost draws for firms from the distribution \(F_c(c) \), using relevant expressions, and the fact that market tightness \(\theta \) is equal to \(\tilde{\mu}_1 + \tilde{\mu}_2 \).

Step 3. Solve for the job acceptance cutoffs \(\tilde{z}_{it}(h, g) \), and the value functions using the following subroutine:
 I. Start with old workers. Assume initial set of values for unemployment \(W(\ell_u, \cdot, o) \) and matches \(\Pi_i(z, \cdot, o) \) for both sectors. Find the job acceptance cutoffs, and update \(\Pi_i(z, \cdot, o) \).
 II. To update \(W(\ell_u, \cdot, o) \), use the job acceptance cutoffs. Iterate until convergence.
 III. Repeat the same steps for young workers.

Step 4. Simulate the economy with a large number of workers drawing demographic shocks, labor market shocks (matching and separating), and match-specific productivity terms. Aggregate the cross-sections of workers to find the distribution of workers \(\Psi \).

Step 5. Use the distributions to update \((EJ^{j+1}_1, EJ^{j+1}_2) \), iterate until the distances \(|EJ^{j+1}_1 - EJ^{j}_1| \), and \(|EJ^{j+1}_2 - EJ^{j}_2| \) are sufficiently small.
Steady State Results

<table>
<thead>
<tr>
<th>Moment</th>
<th>Model</th>
<th>Data</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share of youth unemployment</td>
<td>0.71</td>
<td>0.71</td>
<td>IDB, ILO</td>
</tr>
<tr>
<td>Annual excess job reallocation</td>
<td>0.34</td>
<td>0.33</td>
<td>Haltiwanger et al.(2004)</td>
</tr>
<tr>
<td>Earning losses of old switchers</td>
<td>0.12</td>
<td>0.22</td>
<td>Hoek(2007)</td>
</tr>
</tbody>
</table>
Computation of the Transition

Solve for the transition using an algorithm similar to Costantini and Melitz (2009)

1. Start with \(\{EJ_{1t}, EJ_{2t}\}_{t=0}^{T} \)
2. Solve value functions backwards
3. Simulate the model forward to generate distributions \(\{\Psi_t\}_{t=0}^{T} \)
4. Update \(\{EJ_{1t}, EJ_{2t}\}_{t=0}^{T} \), iterate until convergence